Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior.
نویسندگان
چکیده
The ability to selectively lesion mouse basal forebrain cholinergic neurons would permit experimental examination of interactions between cholinergic functional loss and genetic factors associated with neurodegenerative disease. We developed a selective toxin for mouse basal forebrain cholinergic neurons by conjugating saporin (SAP), a ribosome-inactivating protein, to a rat monoclonal antibody against the mouse p75 nerve growth factor (NGF) receptor (anti-murine-p75). The toxin proved effective and selective in vitro and in vivo. Intracerebroventricular injections of anti-murine-p75-SAP produced a dose-dependent loss of choline acetyltransferase (ChAT) activity in the hippocampus and neocortex without affecting glutamic acid decarboxylase (GAD) activity. Hippocampal ChAT depletions induced by the immunotoxin were consistently greater than neocortical depletions. Immunohistochemical analysis revealed a dose-dependent loss of cholinergic neurons in the medial septum (MS) but no marked loss of cholinergic neurons in the nucleus basalis magnocellularis after intracerebroventricular injection of the toxin. No loss of noncholinergic neurons in the MS was apparent, nor could we detect loss of noncholinergic cerebellar Purkinje cells, which also express p75. Behavioral analysis suggested a spatial learning deficit in anti-murine-p75-SAP-lesioned mice, based on a correlation between a loss of hippocampal ChAT activity and impairment in Morris water maze performance. Our results indicate that we have developed a specific cholinergic immunotoxin for mice. They also suggest possible functional differences in the mouse and rat cholinergic systems, which may be of particular significance in attempts to develop animal models of human diseases, such as Alzheimer's disease, which are associated with impaired cholinergic function.
منابع مشابه
Selective lesion of basal forebrain cholinergic neurons in mice with the mu p75-saporin immunotoxin: Neuroanatomy and behavior
The basal forebrain cholinergic neurons (BFCNs) are dramatically affected in several neurodegenerative diseases such as Alzheimer’s disease or Rett syndrome. The characterization of the behavioral consequences of selective BFCN lesions is necessary to study the implication of these neurons in cognitive functions. Until recently, this model was not available in mice, despite the growing interest...
متن کاملEvidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability.
Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mecha...
متن کاملThe serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens
Classic hallucinogens share pharmacology as serotonin 5-HT2A, 5-HT2B, and 5-HT2C receptor agonists. Unique among most other Schedule 1 drugs, they are generally non-addictive and can be effective tools in the treatment of addiction. Mechanisms underlying these attributes are largely unknown. However, many preclinical studies show that 5-HT2C agonists counteract the addictive effects of drugs fr...
متن کاملCholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA
Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...
متن کاملStriatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K+ current.
Large aspiny cholinergic interneurons provide the sole source of striatal acetylcholine, a neurotransmitter essential for normal basal ganglia function. Cholinergic interneurons engage in multiple firing patterns that depend on interactions among various voltage-dependent ion channels active at different membrane potentials. Leak conductances, particularly leak K(+) channels, are of primary imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 20 شماره
صفحات -
تاریخ انتشار 2001